Farm(er) characteristics driving the adoption of pre-harvest mycotoxin management measures

Esmée Janssen¹*, Monique Mourits¹, H.J. (Ine) van der Fels-Klerx^{1,2}, Alfons Oude Lansink¹ ¹ Business Economics Group, Wageningen University and Research, Wageningen, the Netherlands ² RIKILT, Wageningen University and Research, Wageningen, the Netherlands *esmee.janssen@wur.nl

Background

Conclusions

Farmers apply various pre-harvest measures to reduce fungal infection and mycotoxins in wheat, such as selection of a resistant wheat variety, fungicide use, soil cultivation and crop rotation. Since farmers play a key role in the prevention and control of *Fusarium* infection and mycotoxin contamination, it is important to understand their behaviour regarding the adoption of mycotoxin management to get a better insight in how to stimulate a future change in behaviour.

- The use of a certain pre-harvest measure is interrelated with at least one other measure.
- Farm(er) characteristics that drive the adoption of pre-harvest measures are: the use of wheat as main crop, use of a decision support system, farmers education level, mycotoxin knowledge and their relative risk attitude.

Objective

The aim of this study was to i) identify the (sets of) pre-harvest measures against *Fusarium* infection that Dutch wheat farmers currently apply and ii) to understand the farm(er) characteristics that drive the adoption of these measures.

Method

Data: questionnaire 105 Dutch wheat farmers

- Pre-harvest measures against *Fusarium* infection (see Table 1)
- Farm and farmer characteristics (see Table 3)

Analysis:

• Bivariate probit model to identify the correlation between the use of different measures (Table 2)

• Univariate probit model to identify the farm(er) characteristics that drive the use of certain pre-harvest measures (Table 3).

Results

Pre-harvest measures

Table 1. Adoption rate of pre-harvest measures by Dutch wheat farmers (n=105)

Code	Pre-harvest measure	% of farmers
Var_res	Selection of resistant wheat variety (resistance >7)	85%
Var_log	Lower the risk of lodging by selection of wheat variety	88%
Fun_all	Fungicide use during whole cultivation period	84%
Fun_flo	Fungicide use around flowering	65%
Plough	Ploughing after grain harvest	77%
Rot	Crop rotation: no grains as pre-crop	73%
Decont	Use of decontaminated seeds	92%
Bio	Biological control	20%

Table 2. Correlation coefficients between different pre-harvest measures taking into account farm and farmer characteristics, i.e. rho of bivariate probit models

	^a Var_res	Var_log	Fun_all	Fun_flo	Plough	Rot	Decont	Bio
Var_res		0.03	0.77**	0.79**	0.28	-0.27	-0.37	0.99**
Var_log	0.03		-0.12	-0.12	0.62	0.54**	0.31	0.27
Fun_all	0.77**	-0.12		0.68**	0.42	-0.11	0.37	0.14
Fun_flo	0.79**	-0.12	0.68*		0.30	-0.30	0.43	0.17
Plough	0.28	0.62	0.42	0.30		0.36*	0.76**	0.37
Rot	-0.27	0.54**	-0.11	-0.30	0.36*		0.25	-0.49**
Decont	-0.37	0.31	0.37	0.43	0.76**	0.25		0.11
Bio	0.99**	0.27	0.14	0.17	0.37	-0.49**	0.11	

Results

Farm(er) characteristics

Table 3. Marginal effects of farm(er) characteristics on the use of pre-harvest measures.

	^a Var_res	Var_log	Fun_all	Fun_flo	Plough	Rot	Decont	Bio
Total arable land	0.001	0.000	0.001	-0.001	-0.002*	0.001	0.000	0.000
Wheat as main crop	0.019	0.001	0.011	0.359**	0.073	-0.340**	0.026	0.025
Wheat for food	-0.050	0.078	0.008	-0.147*	-0.047	0.041	-0.115	-0.040
Past Fusarium infections	0.072	-0.078	0.054	-0.034	0.074	-0.008	0.052	-0.016
Use of a decision support program	0.133	-0.081	-0.050	0.306**	-0.158	0.143	-0.108	-0.033
Age over 55 years	-0.101	-0.037	-0.062	-0.011	0.098	0.011	0.014	-0.160*
Higher educated	0.174**	0.036	0.007	-0.034	0.250**	-0.079	0.008	-0.005
Mycotoxin knowledge	0.031	0.042	0.102**	-0.005	0.030	0.018	0.022	0.012
Risk Perception	0.008	0.001	0.020*	0.019*	-0.007	-0.008	0.014	0.020*
Low relative risk attitude	0.110	0.062	0.048	0.362**	0.139*	0.040	0.007	0.125

^a see Table 1 for the full name of the pre-harvest measures abbreviation; *significant at 10% level; ** significant at 5% level

- Most of the Dutch farmers take multiple pre-harvest measures against *Fusarium* infection (Table 1) usually in sets of 5-7 different measures (data not shown).
- The choice for a certain measure is related to the choice of other measures (Table 2), e.g. farmers using a Fusarium resistant wheat variety are more likely to use fungicides, and farmers that do not have grains as pre-crop are less likely to adopt biological control.

^a see Table 1 for the full name of the pre-harvest measures abbreviation; *significant at 10% level; ** significant at 5% level

- Farmers with wheat as main crop are 36% more likely to adopt fungicide use during flowering and 34% less likely to adopt a rotation scheme with no grains as a pre-crop.
- The use of a decision support system increases the probability that a farmer uses fungicides during flowering, indicating a more targeted fungicide use.
- Higher educated farmers are 17% more likely to use *Fusarium* resistant wheat varieties and 25% more likely to plough after a grain harvest compared to farmers with lower education levels, whereas having specific *Fusarium* and mycotoxin knowledge only increased the probability of fungicide use by 10%.

Wageningen University & Research P.O. Box 123, 6700 AB Wageningen Contact: esmee.janssen@wur.nl T + 31 (0)317 484065, M +31 (0)6 24921759 www.wur.nl/BEC

Acknowledgements

This study is performed as part of the MyToolbox project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 678012.